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ABSTRACT

In recent years, knowledge-aware recommendation systems have gained popularity as a solution to 
address the challenges of data sparsity and cold start in collaborative filtering. However, traditional 
knowledge graph convolutional networks impose significant computational burdens during training, 
demanding substantial resources and increasing the cost of recommendations. To address this issue, 
this article proposes a lightweight knowledge graph convolutional network for collaborative filtering 
(LKGCF). LKGCF eliminates the feature transformation and nonlinear activation components, by 
focusing on essential elements such as neighborhood aggregation and layer combination. LKGCF 
captures the user’s long-distance personalized interests on the knowledge graph by sampling from 
neighborhood information and constructing a weighted sum of item embeddings. Experimental 
results demonstrate that the proposed model is easy to train and implement due to its coherence 
and simplicity. Furthermore, notable improvements in recommendation performance are observed 
compared to strong baselines.
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INTRODUCTION

The advancement of social technology, specifically the widespread integration of the mobile Internet 
into people’s daily lives, has resulted in individuals being exposed to an extensive range of information 
daily. The overwhelming quantity of data has given rise to information overload, causing individuals 
to experience feelings of being overwhelmed. Recommendation systems have emerged to alleviate the 
issue of information overload. The main objective of recommendation systems is to assist individuals 
in navigating through the extensive data and identifying content that may be relevant or of personal 
interest.

Recommendation systems are widely used in diverse domains, including e-commerce, short 
videos, healthcare services, and education (George & Lal, 2021; Salloum & Tekli, 2021; Xiao et 
al., 2022 ). For example, a general approach in recommendation systems is ranking, where items are 
rated according to popularity, and highly popular items are recommended to users. However, this 
recommendation method may need more attention focused on user preferences and personalized 
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needs. Collaborative filtering is a conventional method that leverages historical user-item interactions 
to generate personalized recommendations. Extensive literature has demonstrated the significant 
advantages of collaborative filtering in improving recommendation performance (He et al., 2017; 
Herlocker et al., 2004). However, collaborative filtering may encounter challenges, such as data 
sparsity and cold start, in certain recommendation scenarios (Wei & He, 2022).

Knowledge graph is a knowledge database representing the objective world in a graphical form. 
It is currently widely utilized in various applications (Ji et al., 2021), such as human-computer 
interaction and intelligent search. Higher-level structures and semantic information extracted from the 
given entities can effectively alleviate the data sparsity and cold-start issues encountered in traditional 
recommendation (Li et al., 2022). Several studies have demonstrated the substantial benefits of 
incorporating knowledge graphs into collaborative filtering (H. Wang et al., 2019; Zhang et al., 2016). 
Currently, the predominant approach involves constructing knowledge-aware recommendations using 
graph neural networks, of which knowledge graph convolutional networks (KGCN) (H. Wang et al., 
2019) and knowledge graph attention networks (X. Wang et al., 2019a) are two common methods.

Despite the effectiveness of these models based on graph neural networks in enhancing 
recommendation performance, several challenges still need to be addressed. For instance, many 
of these models inherit the steps from traditional graph neural networks. Nonetheless, feature 
transformation and nonlinear activation are ineffective in knowledge-aware recommendation systems 
and may impede recommendation performance in collaborative filtering. Furthermore, this leads to 
a substantial increase in the complexity of the recommendation system, thereby complicating the 
training procedure.

Table 1 presents a summary of the main acronyms used in the paper. It provides a quick reference 
for readers to understand the abbreviations employed in this paper.

Background Example
NGCF is a conventional model based on GCN for the recommendation, which constructs a user-
item graph by incorporating the interaction history between users and items. It leverages graph 
neural networks to uncover the personalized interests of users. NGCF employs GCN-based iterative 
aggregation to discover higher-order latent information about items or users. Figure 1(a) visually 
illustrates the iterative aggregation process for item embeddings in NGCF.

LightGCN builds upon NGCF with a lightweight framework and surpasses NGCF in terms of 
recommendation accuracy. Figure 1(b) visually represents the iterative aggregation process for item 
embeddings in LightGCN.

It can be observed that LightGCN removes the non-linear activation function and feature 
transformation matrix from NGCF. Inspired by this, it is believed the design of a lightweight model 
is crucial in scenarios where knowledge graphs and graph neural networks are combined for the 
recommendation. This belief stems from the fact that the node representations in knowledge graphs 
and user-item graphs exhibit a striking similarity, as both are represented by a single identity document 
(ID) to denote the nodes in the graph. Therefore, integrating knowledge graphs and graph neural 
networks in recommendation systems calls for a lightweight approach.

Table 1. List of major acronyms

Acronyms Full Name

KGCN 
GCN 
LightGCN 
GCL 
NGCF

Knowledge Graph Convolutional Network (H. Wang et al., 2019) 
Graph convolutional neural network (Bruna et al., 2013) 
Light Graph Convolution Network (He et al., 2020) 
Graph contrastive learning 
Neural graph collaborative filtering (X. Wang et al., 2019b)
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Main Contributions
In this paper, the data structure of the knowledge graph in collaborative filtering is analyzed. It is 
observed that one-hot ID represents each node (i.e., entity) in the knowledge graph without any concrete 
semantics, which differs from the data processed by traditional graph neural networks. Drawing 
inspiration from LightGCN, LKGCF, a collaborative filtering model based on knowledge graphs, 
is raised in this paper. LKGCF preserves the embedding layer and neighborhood aggregation solely 
and introduces an additional layer combination to mitigate over-smoothing. The key contributions 
of this paper are outlined as follows.

•	 A coherent and lightweight knowledge graph convolution network is proposed in this paper. 
Compared to KGCN, LKGCF significantly reduces complexity by consisting of only essential 
components, mitigating training difficulties. Additionally, the training efficiency and resources 
cost are improved by applying the raised LKGCF method.

•	 Ablation experiments are conducted to enhance the interpretability of the proposed method from 
a technical perspective. This demonstrates that feature transformation and nonlinear activation 
are ineffective in KGCN for collaborative filtering. Thus, it is feasible to design a concise 
framework for KGCN.

•	 The experiments conducted on public datasets demonstrate the significant superiority of the 
proposed method over strong baselines. In this paper, two public datasets about movies and music 
recommendations are adopted to validate the recommendation effectiveness of the proposed 
method. The two public datasets exhibit different characteristics both in quantities and densities, 

Figure 1. The iterative aggregation process of item embeddings in both NGCF and LKGCN models
Note: The red vector signifies the item vector post a single round of aggregation.
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which creates excellent challenges for the LKGCF approach. The experimental results show 
distinct advantages over strong baselines in various evaluation metrics, including area under 
curve (AUC), Recall@N, F1-score (F1), and RelaImpr.

RELATED WORKS

This section presents the related research in graph neural networks and knowledge graph-based 
recommendation systems.

Graph Convolutional Neural Network
Graph neural networks were initially introduced by leveraging recurrent neural networks to process 
diverse graph-structured data (Gori et al., 2005). Bruna et al. (2013) introduced the GCN, which 
utilizes frequency domain convolution and necessitates access to the entire graph for frequency domain 
computation. Kipf and Welling (2016) proposed a spatial domain-based convolutional network that 
utilizes the degree matrix to determine the distribution of node weights via convolution operations. To 
facilitate the distributed training of GCN on large-scale graph data, Hamilton et al. (2017) introduced 
a graph sampling neural network that employs a node-centric neighbor sampling strategy. X. Wang 
et al. (2019a) proposed graph attention networks, which integrated the attention mechanism with 
GCN to improve recommendation performance. The GCL method combined contrastive learning 
with GCN to address the issue of graph structural imbalance (Wang et al., 2022).

However, it is important to note that the data processed by these neural networks is typically 
high dimensional. In other words, the data processed by GCN often takes the form of an attribute 
graph, where each node carries abundant semantic information. This differs significantly from the 
data format used in knowledge graphs for collaborative filtering, where an item is identified by a 
single ID, and its additional information is commonly represented as triplets. Therefore, this situation 
should be carefully considered when trying to use GCN for the knowledge graph. Motivated by 
this observation, LKGCF is raised by simplifying KGCN by exclusively preserving the essential 
neighborhood aggregation algorithm while discarding feature transformation with bias term and 
nonlinear activation.

Knowledge-Aware Recommendation
Knowledge-aware recommendation systems are classified into three categories: embedding-based 
methods, path-based methods, and unified methods (Guo et al., 2020).

Generally, embedding-based methods improve user and item representations by employing 
knowledge graph embedding techniques. Considering the heterogeneity of nodes and relationships, 
Zhang et al. (2016) introduced collaborative knowledge based on embedding, where they learned 
the latent vector by extracting a structural representation for a specific item. H. Wang et al. (2018a) 
presented a deep knowledge-aware network for news recommendation, which employs attention to 
match candidate news and integrates the user’s historical interests as user embeddings with varying 
weights. A unified graph-based recommendation model was proposed by Zhao et al. in 2021, which 
effectively leveraged the undirected co-occurrence and directed knowledge information in a graph to 
discover user preferences. However, knowledge graph embedding methods need to pay more attention 
to the abundant structural information of a graph by solely focusing on the nodes without leveraging 
the connections between entities.

Path-based methods apply knowledge graphs more naturally by discovering the connections 
between entities in knowledge graphs through paths.

X. Wang et al. (2019c) proposed an explainable reasoning mechanism over knowledge graphs 
for the recommendation, which utilized long short-term memory to encode paths in the graph and 
designed a weight pooling to distinguish the importance of different paths. The method of leveraging 
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meta-path based on the context for the top-N recommendation was proposed by Hu et al. (2018), in 
which a new attention mechanism was raised to improve the representation of the context, users, and 
items based on different paths. Chen et al. (2021) modeled the dynamic user-item interactions over 
time to enhance recommendation performance and interpretability. These approaches tend to have 
good interpretability, but some expertise in designing meta-paths is required while building the models.

The methods mentioned above only utilize a single aspect of the knowledge graph. Unified 
methods extract semantic information about entities and relationships while utilizing connectivity 
information within the knowledge graph. RippleNet continuously and automatically discovers 
users’ potential hierarchical interests by propagating preferences through the knowledge graph 
(H. Wang et al., 2018b). To capture users’ long-distance interests, KGCN was introduced, which 
utilizes the relationships between items and users to construct the knowledge graph for performing 
graph convolution. However, many methods based on graph neural networks attempt to emulate 
the steps of traditional GCN, including feature transformation and nonlinear activation operations. 
Intuitively, feature transformation is essential for data with high-dimensional semantic information 
as it enables discovering hidden connections among different dimensions. Considering that each 
entity in the knowledge graph is represented by a single ID, the operations of feature transformation 
and nonlinear activation are redundant in knowledge graph recommendation systems. To reduce the 
training parameters and enhance the recommendation performance, a lightweight KGCN approach 
for collaborative filtering by discarding the redundant components of feature transformation and 
nonlinear activation is proposed.

EMPIRICAL EXPLORATIONS ON KGCN

To automatically capture the high-level structure and semantic information, the embedding of a given 
entity in KGCN is represented by calculating neighborhood information with bias in the neighborhood 
aggregation procedure, with the bias term added during the feature transformation operation. Formula 
1 demonstrates the utilization of feature transformation and nonlinear activation after neighborhood 
aggregation in KGCN.

e we b
i
h

i
h+ = +( )1 s 	 (1)

e
i
h+1  is the feature representation of item i after h loops of aggregation; s  is nonlinear activation 

function; w is the weight matrix of feature transformation; b is the bias term for feature transformation.
Since each node of user-item interaction in collaborative filtering only processes a single attribute 

(i.e., ID), the operation of feature transformation with bias term and nonlinear activation becomes 
redundant, as it cannot yield rich features. In certain cases, it may even escalate the training complexity. 
Thus, ablation experiments are performed using rigorous experimental setups on two authentic datasets, 
namely MovieLens-20M and Last.FM. The following sections provide comprehensive descriptions 
of these datasets. This section conducts ablation experiments by eliminating specific components 
of KGCN, namely nonlinear activation and feature transformation with bias term. Three types of 
ablation experiments are designed as below.

•	 KGCN_no_ft. Discards the operation of feature transformation with bias term in KGCN.
•	 KGCN_no_na. Discards the operation of nonlinear activation in KGCN.
•	 KGCN_no_na&ft. Both operations feature transformation with bias term and nonlinear activation 

is discarded from KGCN.
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Figures 2 and 3 present the experimental results of ablation. It is important to note that all 
experiments use the same parameter settings as KGCN, ensuring optimal performance. These 
figures clearly demonstrate that all three variants of KGCN (KGCN_no_na, KGCN_no_ft, and 
KGCN_no_na&ft) generally outperform KGCN on both datasets when evaluated using Precision@20 
and Recall@20.

The recall of different types of KGCN on Last.FM and MovieLens-20M are plotted in Figure 
3. The recommendation effectiveness on Last.FM by applying different KGCN models is illustrated 
in Figure 3(a). It can be observed that the recall of KGCN_no_ft shows notable advantages when 
compared with KGCN, which proves that the operation of feature transformation is not helpful in 
improving the recommendation effectiveness. Although the improvement by applying KGCN_no_na 
is not notable, a few enhancements can also be made when compared with KGCN. From these results, 
it is suggested that the operations of feature transformation and nonlinear activation are abundant. 
In Figure 3(b), KGCN_no_na also performs better than KGCN on the dataset MovieLens-20M. 
However, it can be observed that KGCN_no_ft behaves worse than KGCN with recall as the evaluation 
metric. It is believed that in the dataset MovieLens-20M, a large number of items are relevant to the 
recommendation topic, and then KGCN is more likely to obtain a slightly higher recall compared 
to KGCN_no_ft.

It can also be observed that on Last.FM, KGCN_no_na brings a few benefits when compared 
with KGCN, and the recommendation performance is not generally affected as much as KGCN_
no_ ft. It is believed that the sparse data in Last.FM results in a more negative impact while 
applying feature transformation, so the performance is significantly better by removing feature 
transformation. Surprisingly, the highest recommendation performance on the two datasets is 
obtained by applying KGCN_no_na&ft, in which neither feature transformation with bias term 
nor nonlinear activation is included. It can be demonstrated that the two operations in KGCN 
are redundant, and the recommendation effectiveness can be improved when the two operations 
are removed from KGCN.

Figure 2. The Top_n recommendation performance of three types of KGCN on public datasets with precision@20 as the evaluation 
metric
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METHODOLOGY

The contribution of feature transformation with bias term and nonlinear activation components to the 
recommendation performance in collaborative filtering, based on the knowledge graph, is limited. 
Therefore, a lightweight knowledge graph convolutional network, namely LKGCF, is proposed to 
reduce the complexity of KGCN and enhance recommendation effectiveness in collaborative filtering. 
In order to simplify the LKGCF approach and reduce the number of parameters, the proposed method 
eliminates the redundant components of feature transformation with bias and nonlinear activation 
functions. Additionally, the proposed LKGCF method incorporates an additional combination layer 
for item embeddings to enhance the representation of target items and prevent over smoothing. 
The proposed LKGCF approach is easier to train and interpret due to its simplified design. In this 
section, an explanation of the preliminaries is provided, followed by the presentation of the LKGCF 
framework. Model training and prediction are then introduced.

Preliminaries
This section begins with an explanation of the data structure in the user-item interaction matrix and 
knowledge graph, followed by an introduction to the task of collaborative filtering based on the 
knowledge graph. The main objective of this paper is to leverage the lightweight LKGCF approach 
to effectively recommend interesting items to users.

Definition 1 (User-Item Interaction): In a typical recommendation scenario, U = {
u u u u

n1 2 3
, , , ,¼¼ }is defined a set of M users, and V = {v v v v v

n1 2 3 4
, , ,

, , , ,¼¼ } is a set of N items. Y 
records the historical interactions between the user and items; the user-item interaction matrix is 
represented as Y∈RMXN , where each element is 0 or 1. And Y

uv
= 0  indicates that the user u has no 

interactions with the item v, otherwise Y
uv

= 1 .
Definition 2 (Knowledge Graphs): Knowledge graphs are introduced as auxiliary information to 

improve the performance of collaborative filtering. Define G = {(h, r, t) | h, t∈E, r∈R} as the knowledge 
graph, where h, r, and t represent the head, relation, and tail of a triple in the knowledge graph, 
respectively. E and R indicate the set of entities and relations in knowledge graph G. Considering that 

Figure 3. The Top_n recommendation performance of three types of KGCN on public datasets with recall@20 as the evaluation metric
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the information of the real world contained in the knowledge graph is limited, A = {(v, e)|v ∈ V, e ∈ E} 
indicates the entities in the knowledge graph. Moreover, each item v in the real world is represented 
by the entity v in the knowledge graph. In collaborative filtering based on the knowledge graph, the 
embedding of users and items are represented by using the historical interaction records between 
users and items in Y, along with many real information-related entities in the knowledge graph.

Definition 3 (Recommended Items): Given the matrix of the user-item interaction Y along with 
the knowledge graph G, the task of collaborative filtering is to predict whether the user u is interested 
in the item v. To achieve the goal, LKGCF attempts to learn a function ŷ

uv
=F u v Y G( , | , , )Q  to 

predict the probability that the user interacts with the given item v, where Θ denotes the model 
parameters of function F . 

Table 2 presents the key symbols used in this paper.

The Proposed Framework of LKGCF
In LKGCF, KGCN is significantly simplified by retaining only the neighborhood aggregation (graph 
convolution), and embedding layer while eliminating feature transformation and nonlinear activation.

Table 2. List of key symbols

Symbol Meaning

e e
i
h

u
h, Embeddings of item i and user u after h rounds of aggregation

s Non-linear activation function

N u( ) , N i( ) The set of neighbors for user u and item i

U={u u u u
n1 2 3

, , , ,¼¼ } Set of M users

V={v v v v v
n1 2 3 4

, , ,
, , , ,¼¼ } Set of N items

Y User-item interaction matrix

G={(h, r, t) | h,t∈E, r∈R} Knowledge graph

E,R Set of entities and relations in the knowledge graph G

A= {(v, e)|v ∈ V, e ∈ E} Entities in the knowledge graoh

e u r
i
, , Embeddings of e∈E, u∈U, r∈R respectively

ˆ
,
y
u v Clicking rate score on the item v for a user

K Number of neighbors sampled during the neighborhood aggregation

D Dimension of the embedding

H Loops of neighborhood aggregations

λ L2 regularize weight

Lr Learning rate
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The framework of LKGCF is illustrated in Figure 4. In LKGCF, the input is a knowledge graph 
consisting of users, items, and their relations. Each user in the recommendation systems is identified 
with a unique user ID. The entities in the knowledge graph are extracted from the items that are 
candidates for a given user or from the auxiliary information conveyed in the knowledge graph. A 
unique relation ID represents the relation between different entities. Then, all the items/relations/users 
are embedded by utilizing the full connection layer, and the weighted sum of the embeddings learned 
at all layers is adopted as the final embedding. It can be observed that the most crucial components 
of LKGCF are neighborhood aggregation and layer combination.

The Embedding Layer
Training a neural network is typically more manageable when using dense high-dimensional data than 
sparse low-dimensional data. However, acquiring large amounts of high-dimensional data may only 
sometimes be feasible. Thus, it is a great challenge to effectively leveraging low-dimensional sparse 
data. One common approach to address this issue is to enrich representation for low-dimensional data 
through embedding. By incorporating an embedding layer into the original graph neural network, 
obtaining a high-dimensional representation of the input becomes straightforward. Formulas 2, 3, 
and 4 outline the method employed to implement the embedding layer,

e w id
i e e
= . 	 (2)

u w id
u u

= . 	 (3)
r = w id

r r
. 	 (4)

where e u
i
,  and r is the embedding of e∈E, u∈U, r∈R, respectively. w w

e u
,  and w

r
are the embedding 

weight matrices for entities, users, and their relations, respectively. id id id
e u r
, , are the ids of entities, 

users, and their relations. Taking these id s as the input of the embedding layer in the proposed 
LKGCF method, the outputs are dense high-dimensional features after the processing of the full 
connection layer. Figure 5 illustrates the process of embedding in the proposed LKGCF approach.

Figure 4. The framework of the proposed LKGCF method
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Figure 5. The process of embedding
Note: On the right side of the graph, the brown nodes represent entity embeddings, while the green 
edges represent relation embeddings.

Figure 6. The framework of neighborhood aggregation and layer combination
Note: In this graph, e represents the embedding of an entity; i is the candidate item; u represents the 
embedding of a user u; eh=0  represents the embedding of e after h loops of neighborhood aggregation, 
and r represents the embedding of the relationship edge r in the knowledge graph.
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Neighborhood Aggregation and Layer Combination
Neighborhood aggregation plays a crucial role in LKGCF as it updates the embedding of a specific 
item by capturing the user’s preference toward the attributes associated with the item in the knowledge 
graph. The structure of this component is depicted in Figure 6. Specifically, in a triad where the target 
entity serves as the head, the tail represents an attribute linked to the target entity. The selection of 
the neighborhood follows a random sampling strategy. K samples are randomly selected from the 
neighboring nodes of the target entity, with each sample represented by a single node. These K 
sampled nodes, together with the target entity and their corresponding relationships, form K triples. 
It is important to note that the value of K, which determines the number of random samples, is 
optimized through grid search to obtain the optimal value. The user’s preference for the given item 
is determined using Formula 5.

K u r
r
u T= ⋅ 	 (5)

Where u  and r  are the embedding of u∈U and r∈R, respectively. K
r
u  represents the degree of 

preference between the given user u  and the relation r . A higher relation score indicates a stronger 
user preference for the relationship r . In a knowledge graph, an entity typically has multiple relations 
with other nodes, and it is necessary to normalize K , as depicted in Formula 6:

K norm
r
u_ =

exp

exp

k

k

r
u

e N i r
u

i e

i e

,

,

( )
( )∈ ( )∑

	 (6)

Here, N i( )  denotes the embedding set of the first-order neighbors of item i in the knowledge graph, 
at the same time, r

i e,
 represents the embedding of the relation edge between entity i and its neighboring 

entity e. Once the relation score is obtained, the conventional aggregation process in KGCN is 
expressed by Formula 7: 

e
i
h+1 = +












+












∈ ( )
∑s w e K norm e b

i
h

e N i
r
u

i e
_

.


	 (7)

Where e
i
h  is the embedding of e

i
 after h loops of aggregation, and e

i
h+1  represents the next aggregation 

result of e
i
h . LKGCF drops the operations of feature transformation and nonlinear activation function, 

as shown in Formula 8: 

e
i
h+1 = � _

.
e K norm e
i
h

e N i
r
u

i e
+

∈ ( )
∑ 	 (8) 

It is suggested that the knowledge graph contains a wealth of information, and it is not enough 
to collect only the nodes that are directly connected to the target node. The high-order neighbors of 
a target node are also believed to contain wealth information (Li et al., 2022). Therefore, the final 
embedding of a target item carries the implicit long-distance interests of a user. For example, the 
filming location of the movie “Farewell My Concubine” is Beijing. This movie is illustrated in a 
knowledge graph like this: “Farewell My Concubine - starring - Leslie Cheung, Farewell My Concubine 
- filming location – Beijing.” If a user cares more about the starring role of a movie, then the relation 
score between the user and the “starring” obtained by applying Formula 5 is undoubtedly higher. 
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The aggregated embedding of “Farewell My Concubine” is believed to transfer more information 
about “Leslie Cheung.”

As the number of aggregations increases, the feature representation of the target item becomes 
smoother (Li et al., 2018). Additionally, the semantic information captured in each aggregation varies. 
Therefore, in the proposed LKGCF approach, a layer combination is integrated to prevent excessive 
smoothing of embeddings. Formula 9 represents the final weighted sum of the embeddings obtained 
through each neighborhood aggregation:

e e h
final

m

h

i
m= +( )

=
∑

1

1( / ) 	 (9)

where e
final

 indicates the final embedding of the entity e; h  means the loops of neighborhood 
aggregation; e

i
m  is the embedding of e after m loops of neighborhood aggregation.

Prediction and Learning Algorithm
In LKGCF, the entity ID serves as the input to the embedding layer, which transforms it into high 
dimensional feature vectors through multiple aggregation iterations and layer combinations. Finally, 
the entity is represented by the embedding e

final
. In the proposed LKGCF approach, whether an item 

is preferred by a user is determined by the click-through rate (CTR). The inner product of ei  and u   
is treated as the clicking rate score, as shown in Formula 10:

ˆ ·
,
y e u
u v final

T= 	 (10)

where ˆ
,
y
u v

 represents the clicking rate score on item v for a user. The likelihood that a user clicks on 
the item increases as ˆ

,
y
u v

 increases. As shown in Formula 11, after getting the clicking score, CTR 
can be obtained, then pre can also get in Formula 12:

CTR sigmoid y
u v

= ( )ˆ
,

	 (11)

pre
if ctr

if ctr
=

≥
<








1 0 5

0 0 5

    

    

.

.
	 (12)

The value of pre indicates the probability of the user clicking on the target item. A higher value 
of pre indicates that the user is more interested in the target item.

In order to improve the performance of the proposed model, LKGCF needs to learn the features 
of users and items constantly. The learning technique minimizes the loss function by continuously 
updating the initial user and item feature vectors, making the prediction more accurate. When 
calculating the loss of the learned model, the cross-entropy loss combined with the sigmoid function 
is adopted, and L2 regularization is applied to prevent over-fitting during the training procedure. 
Considering that the predicted labels are only mutually exclusive, namely 0 and 1, the specific loss 
function is shown in Formula 13:

loss y lg
e

y
u v M u v y u v

u v

= −
+










+ −( ) −

( )∈ −∑ , , ˆ ,
,

lg
1

1
1 1

1

1++





















+

−
e
yu vˆ ,

l  
2
2 	 (13)
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The first term in Formula 13 is the cross-entropy loss function, where M is the user-item interaction 
matrix. The second term is the L2 regularization that prevents over-fitting. It should be noted that 
in the whole learning process, only the parameters of the embedding layer in the proposed LKGCF 
must be updated iteratively.

The algorithm of LKGCF is presented as follows.
Algorithm 1  
The Algorithm of LKGCF 
Input: Knowledge Graph G(E,R); interaction matrix Y; sampling 
neighbors mapping N: e® 2E ; dimension of the embedding D; loops 
of neighborhood aggregations H; u{ }

∈u U
, r{ }

∈r R
, e{ }

∈e E

Output: Prediction function F u v Y G( , | , , )Q  ;
(1)	 while LKGCF not converge do
(2)	   for (u ,v) in Y do
(3)	    M h


 ←�v

(4)	       for h=H-1, ……., 0 do
(5)	          M[h] ¬ M[h+1]
(6)	         for eÎM[h+1] do
(7)	             M[h] ¬ M[h]  È  N(e);
(8)	    e e eu 0 0



 ← ∀ ∈ 



, M

(9)	    for h=1, …., H do
(10)	        for e�∈ 



�M h  do

(11)	          e hu 

 =e h K norm e hu

e N e
r
u

e e
−

 + −


′

′∈ ( )
∑ ′

1 1_
.

(12)	  e e m
final

m

u= 


 +( )

=
∑

1

1
H

H( / )

(13)	  ˆ ·
,
y e u
u v final

T=
(14)	  Update parameters by gradient descent; 
(15)	 return F

EXPERIMENTS

Extensive experiments are conducted on two public datasets to evaluate the recommendation 
performance of the proposed LKGCF method. The next section provides an introduction to the datasets 
and preprocessing methods in the experiment. The strong baselines are then presented and parameter 
settings are explained. The experimental results are then presented and analyzed.

Datasets and Preprocessing
To examine the effectiveness of the proposed LKGCF approach, experiments are conducted on the 
two public datasets about film and music, respectively.

•	 MovieLens-20M. It is a movie ratings dataset widely used in movie recommendations, in which 
approximately 20 million explicit ratings on the MovieLens website are consistent. In MovieLens-
20M, each movie is rated by users from 1 to 5, and the higher the ratings, the more the user likes 
the movie. Applying a lightweight model with a few training parameters proposed in this paper 
on such datasets may be a great challenge since the dataset of MovieLens-20M is characterized 
in large amounts with dense features.
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•	 Last.FM. It is a public dataset for music recommendation. About 2000 users and more than 
90,000 preferences on the songs are recorded in Last.FM. This is a relatively small dataset with 
sparse features, which is quite different from MovieLens-20M. The implicit features between users 
and items are relatively limited, and it needs to exploit further hidden user intention to improve 
the recommendation effectiveness. Thus, the LKGCF model is anticipated to achieve favorable 
recommendation results as the raised approach can further enrich auxiliary information by 
incorporating the knowledge graph. Besides, the neat LKGCF method is suitable for applications 
without redundant information, just like the dataset Last.FM.

Explicit ratings about the movies and songs can be obtained easily from the two datasets. However, 
the explicit feedbacks cannot be directly used in the proposed LKGCF approach since the input of the 
proposed LKGCF method is binary, namely, either positive or negative. Thus, these original explicit 
feedbacks are converted into 0 or 1, in which 1 represents the entity marked as positive by the users. 
For the corpora, MovieLens-20M, an effective mechanism of setting the threshold of positive and 
negative is to judge whether a rating of the target movie is higher than 4, just as KGCN did (H. Wang 
et al., 2019). In other words, if the rating of a given movie is 4 or 5, then the implicit feedback is 
transformed as 1; otherwise, the implicit feedback is transformed as 0. Considering the preferences 
on the songs are quite sparse on the other corpora Last.FM, if the rating of a song is higher than 0, it 
is marked as positive; otherwise, it is marked as negative. Once the user-item interaction is acquired, 
the corresponding entities for items can be inferred from the knowledge graph. Subsequently, the 
abundant semantic information within the knowledge graph can be utilized to construct embeddings 
for the items. After successfully constructing item embeddings, the items are recommended by 
interacting with user embeddings.

In order to ensure the fairness of the experimental results, the knowledge graph was constructed 
by adopting Microsoft Satori, just as KGCN was (H. Wang et al., 2019). Since only a sub-map of 
Microsoft Satori can be fetched from KGCN, the items not contained in the knowledge graph are 
eliminated.

After data processing, the user-item interaction matrix and knowledge graph are constructed, 
and a total of 13,501,622 interactions and 499,474 pairs of triples are generated for MovieLens-20M. 
And on the dataset Last.FM, 42,346 interactions, along with 15,518 triples, are built. The statistical 
information of the dataset after preprocessing is shown in Table 3.

Formula 14 to 17 demonstrates the computational process of all evaluation metrics in the 
experiment. AUC and F1 are taken as the evaluation criterion to measure the recommendation 
performance. The calculation of AUC is shown as follows:

AUC
rank

M M

M N

i positiveclass i

=
−

+( )
∈∑

·

·

1

2 	 (14)

Table 3. The statistical information of the datasets after preprocessing

MovieLens-20M Last.FM

#users 
#items 
#interactions 
#entities 
# relations 
#knowledge graph triples

138,159 
16954 
13,501,622 
102,569 
32 
499,474

1872 
3846 
42,346 
9,366 
60 
15,518



International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

15

where rank
i
 is the serial number of the  i

th
 sample; M and N represent the amounts of the positive 

and negative samples, respectively.

F
precision recall

precision recall1
2=

+
·

· 	 (15)

F
1

 is also called the balanced F Score, which is defined as the harmonic average of precision and 
recall. Besides, Recall@N is taken as the evaluation metric, as shown in Formula 16: 

Recall N
TP

N
@ = 	 (16)

Where TP  represents the number of the items recommended by the proposed model that the users 
are really interested in, and N is the total number of recommended items. Additionally, RelaImpr is 
taken as another evaluation measure to compare the relative improvement among different models, 
as shown in Formula 17:

RelaImpr
AUC measured model

AUC base model
=

( )−
( )−

−





_ .

_ .

0 5

0 5
1






* %100 	 (17)

Where measured model_  is the models applied in the experiments. Note that in the following 
experimental results, the base model_  refers to KGCN.

Baselines
LKGCF is compared with the following strong baselines to examine how many advantages in 
recommendation performance can be brought.

•	 Singular Value Decomposition (SVD). This is a traditional collaborative filtering method in 
which the missing interactions between users and items can be predicted by applying the SVD 
algorithm (Koren, 2008).

•	 Factorization Machine Library (libFM). This is a model for CTR prediction based on Eigen-
decomposition (Rendle, 2012).

•	 Factorization Machine Library + Translating Embedding (LibFM+TransE). This is 
a combination model of LibFM and TransE (Bordes et al., 2013), which captures the entity 
representation in the knowledge graph as auxiliary information for recommendation.

•	 Personalized Entity Recommendation (PER). The user preferences are distributed to different 
meta-paths in the information network to generate potential user and item features. (Yu et al., 
2014).

•	 Collaborative knowledge base embedding (CKE). This is a combined recommendation model 
by integrating knowledge graph and collaborative filtering (Zhang et al., 2016).

•	 RippleNet. This is a recommendation model by propagating user preferences in a knowledge 
graph (H. Wang et al., 2018b).

•	 Knowledge graph convolutional networks (KGCN). This is a knowledge graph convolutional 
network that can effectively capture the inter-item relatedness by exploiting their associated 
attributions on the knowledge graph (H. Wang et al., 2019).
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Parameter Settings
Experiments are conducted on TensorFlow (Abadi et al., 2016), and the parameters are strictly tuned 
through the grid search on different datasets to achieve the best experimental results. The parameters 
of the model on different datasets are shown in Table 4.

Results
Experimental results are shown in Table 5. It can be observed that on the two public datasets the 
proposed LKGCF method achieves the best prediction performance. On the MovieLens-20M dataset, 
the highest AUC is obtained by LKGCF. Compared with PER, the highest improvement of 15% in 
AUC is achieved on MovieLens-20M. Although the improvement is not notable (an enhancement 
of 0.4%) when compared with KGCN, notable improvements are obtained against all the other 
baselines when taking AUC as the evaluation metric. Furthermore, it can be observed that the results 
of LibFM+TransE are superior to those of LibFM. This highlights the significant advantage of 
incorporating knowledge graphs into recommendation systems, where the rich auxiliary information 
in the knowledge graph plays a crucial role in the actual recommendation process. However, neither 
of the two methods outperforms better than the proposed method LKGCF. It suggests that the usage 
of graph convolutional network also brings benefits in improving the recommendation performance.

Taking F1 as the evaluation measure, LKGCF outperforms the strong baselines on the dataset 
MovieLens-20M. An improvement of 1.0% is obtained when comparing LKGCF with KGCN. A 
surprising enhancement of 19.4% can be observed while taking PER as the baseline. On the other 
dataset Last.FM, the proposed method LKGCF also shows significant advantages in improving the 
recommendation performance. Compared with the strongest baseline KGCN, AUC improves by 2.0%, 
and F1 improves by 1.9% while applying the proposed LKGCF method on Last.FM. The highest 
advantages are obtained when comparing LKGCF with PER. Interestingly, LKGCF behaves better 
on the dataset Last.FM. It is believed that this is because the amount of Last.FM is smaller, and it is 
more suitable for training the proposed model with fewer parameters.

Table 4. The optimized parameters of the proposed model on different datasets

MovieLens-20M Last.FM

K
D
H
λ
Lr

10 
32 
2 
1e-7 
2e-2

10 
16 
1 
1e-4 
5e-4

Table 5. Experimental results of different approaches

Methods MovieLens-20M 
AUC RelaImpr F1

Last.FM 
AUC RelaImpr F1

SVD 
LibFM 
LibFM+ TransE 
PER 
CKE 
RippleNet 
KGCN

0.963 -3.14% 0.919 
0.959 -3.97% 0.906 
0.966 -2.51% 0.917 
0.832 -30.54% 0.788 
0.924 -11.30% 0.871 
0.968 -2.09% 0.912 
0.978 0% 0.932

0.769 -9.12% 0.696 
0.778 -6.08% 0.710 
0.777 -6.42% 0.709 
0.633 -55.07% 0.596 
0.744 -17.57% 0.673 
0.780 -5.41% 0.702 
0.796 0% 0.721

LKGCF 0.982 0.84% 0.941 0.812 5.41% 0.735
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With RelaImpr as the evaluation measure and KGCN as the base model, an enhancement of 0.84% 
is obtained on MovieLens-20M and the improvement on Last.FM is significant, with an increase of 
5.41% while applying LKGCF. The advantages of the proposed LKGCF are even more notable when 
compared with other baselines with Relalmpr as the evaluation metric.

Furthermore, the recall of different models on the two datasets was investigated. The experimental 
results of Recall@10, Recall@50, and Recall @100 are illustrated in Figure 7. The figure shows 
that the highest recall is obtained by applying the proposed LKGCF approach, which is consistent 
with the results in Table 5. The experimental results demonstrate that the proposed LKGCF brings 
notable advantages when compared with strong baselines, despite diverse evaluation metrics. Another 
interesting observation was that PER behaves worse on both of the two datasets. It is analyzed that 
PER is a path-based model for which it is very difficult to design an effective meta-path.

It can be concluded that the proposed LKGCF method can improve the recommendation 
performance for different recommendation scenarios. The performance of LKGCF is attributed to the 
following characteristics. Firstly, LKGCF abandons the redundant structures of the traditional graph 
neural network in favor of a lightweight graph convolutional network for data training. Secondly, 
LKGCF uses layer combination to prevent the over-smoothing of the final item embedding and 
enriches the representation of the original input.

DISCUSSION

LKGCF has a distinct advantage over traditional recommendation systems that rely on GCN and 
knowledge graphs; it possesses a considerably smaller number of trainable parameters. Thus, the 
proposed LKGCF method significantly reduces the computational requirements during model training. 
Additionally, the computational resources are effectively conserved, and the computational burden 
on hardware is alleviated.

In KGCN, the trainable parameters are the embedding layer parameters, the feature transformation 
matrix parameters, and bias terms for each layer during the aggregation process at each iteration. 
The number of parameters in KGCN is presented in Formula 18. Significant numbers of training 
parameters also lead to growth in time complexity. The time complexity of a single forward propagation 
in KGCN is shown in Formula 19.

p P P V I D H D D
KGCN kgcn e kgcn agg e

= + = + +( )_ _
* * * 2 	 (18)

O KGCN O I D H K D( ) = + +( )( )* 2 	 (19)

P
kgcn e_

 and P
kgcn agg_

 represents the number of parameters in the embedding layer and the total number 
of parameters involved in the iterative aggregation, respectively. V

e
 represents the number of 

Figure 7. The recall of different methods on public datasets
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embeddings types. O KGCN( )  indicates the time complexity of a single forward pass in KGCN. I  
is the input dimension of KGCN; D denotes the dimension of the embedding, and H is the number 
of layers in KGCN.

In LKGCF, only the parameters of the embedding layer are involved in the training process, 
significantly reducing the number of training parameters. The number of parameters in LKGCF is 
presented in Formula 20. The time complexity of a single forward propagation in LKGCF is shown 
in Formula 21:

p P V I D
LKGCF LKGCF e e

= =
_

* * 	 (20)
O LKGCF O I D H K( ) = +( )* * 	 (21)

p
LKGCF

 represents the embedding layer parameters in LKGCF. O LKGCF( )  represents the time 
complexity of a single forward propagation in LKGCF. It can be clearly observed that the parameter 
quantity of LKGCF is significantly reduced compared to KGCN. Furthermore, LKGCF also 
significantly reduces the time complexity. However, it should be noted that this is an approximate 
calculation, as additional memory usage must be considered. The actual complexity may vary slightly.

CONCLUSION AND FUTURE WORK

The issue of data sparsity encountered in collaborative filtering is alleviated by using the knowledge 
graph as auxiliary information. This paper puts forward a lightweight knowledge graph convolutional 
network for collaborative filtering by discarding the operations of feature transformation and nonlinear 
activation in traditional GCN to simplify the proposed method and decrease the number of training 
parameters. In this proposed approach, only the parameters of the embedding layer are needed to 
train, which significantly shortens the training procedure. Moreover, an additional combination layer 
is incorporated in the raised approach to prevent over-smoothing and enrich the embeddings of the 
initial input in LKGCF. Experiments on two public datasets about movies and music demonstrate 
that LKGCF achieves the best recommendation performance.

LKGCF can be deployed on devices with limited computational capabilities due to its small 
number of trainable parameters and low computational resource requirements. This is significant 
for reducing the operational costs of recommendation systems. Additionally, due to the essence of 
LKGCF, which involves graph convolution on knowledge graphs, it can also be applied in various 
domains that leverage knowledge graphs, such as intelligent search and intelligent question answering. 
However, it is observed that the utilization of user-item interaction and knowledge graph information 
is imbalanced, as both of exhibit different densities in quantities. This imbalance can negatively impact 
experimental results while applying the LKGCF method.

In the future, it is necessary to deeply investigate the latent interests of the users by avoiding 
representing a user just by simplistic embeddings. Besides, it is essential to enhance the diversity of 
recommended results by mining the items in the long tails. 
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