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ABSTRACT

In the steelmaking process, ensuring stable and reliable furnace plays a vital role for guaranteeing 
production quality of steel products. Traditional methods for detecting furnace anomalies in blast 
furnaces rely on operator judgment models built upon expert knowledge that can be limited by human 
experience. Moreover, data generated in blast furnace ironmaking process can be multidimensional, 
non-Gaussian distributed, and periodical, which can be easily affected by environmental and human 
factors and thus resulting in low accuracy of anomaly detection. Therefore, an online intelligent 
framework for detecting furnace anomalies is in high need. In this paper, the authors propose a novel 
anomaly detection method based on a furnace condition parameter-characterization model, a mining 
model of periodic patterns in the ironmaking process, and a multi-domain adaptive anomaly detection 
algorithm. They conduct extensive numerical analysis based on real-world production datasets as 
well to evaluate the effectiveness and accuracy of the method.
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INTRoDUCTIoN

The blast furnace, as the cornerstone of the steel manufacturing process, stands as the world’s largest 
chemical reactor, boasting a staggering capacity of up to 6000 3m . Inside the furnace, a complex 
interplay of up to 108 chemical reactions takes place (Li et al., 2017). The stable and seamless 
operation of blast furnaces not only guarantees safe production but also serves as a prerequisite for 
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cost reduction, efficiency improvement, and quality enhancement. In the era of cutting-edge 
technologies, such as big data and artificial intelligence, harnessing blast furnace production data for 
comprehensive digitization and intelligence has emerged as an effective means of optimizing 
manufacturing processes for steel enterprises (Han et al., 2018; Kawahata et al., 1988; Zagoskina et 
al., 2019). Notably, the detection of furnace anomalies with the aid of data analysis has emerged as 
a focal point of research in the realm of blast furnace intelligence application.

The blast furnace is a vertical reactor that produces liquid pig iron from coke, iron ore (natural 
rich ore and sintered ore and pellets), and flux (limestone and dolomite) in a continuous process. 
The blast furnace has five sections: the throat, the furnace body, the furnace waist, the belly, and the 
hearth from top to bottom. The reliability of the furnace is decided by various factors such as raw 
materials, operation, environment, and equipment. Typical anomalies are hanging burden, slipping 
burden, channeling, chilled hearth, low stockline, scaffolding, and hearth accumulation.

Furnace anomalies can be detected and diagnosed by two main categories of methods: 
expert system-based methods and data-driven methods. Expert systems use process knowledge 
and historical experience to construct rules and knowledge bases for furnace anomalies. These 
methods can achieve high accuracy and meet process requirements. However, these methods are 
unscalable and show low tolerability to status changes in the furnaces. Moreover, they require high 
maintenance costs. Some examples of blast furnace expert systems are AGS system by Kawasaki 
Steel Corporation in Japan, SIMETAL BF VAiron by Primetals Technologies, AI-based expert 
systems by Baosteel (Dou et al., 2015), etc.

Data-driven anomaly detection algorithms have been a popular research direction in recent 
years (Abdel-Sayed et al., 2016; Shi et al., 2020; Zeberli et al., 2021). They can be categorized into 
four types: (1) reconstruction algorithms, (2) clustering-based methods, (3) multivariate statistical 
methods, and (4) improved PCA algorithms.

Reconstruction algorithms, such as Auto Encoder (AE) (Chen et al., 2018), Variational 
Auto Encoder (VAE) (An & Cho, 2015), Auto-Regressive Integrated Moving Average (ARIMA) 
(Yaacob et al., 2010), and Prophet (Thiyagarajan et al., 2020), use deep learning or machine 
learning techniques to detect anomalies based on the reconstruction errors between the original 
and the generated data. Clustering-based methods, such as Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN), detect anomalies by identifying the samples that are isolated 
from the main clusters (Çelik et al., 2011). Multivariate statistical methods, such as Principal 
Component Analysis (PCA), reduce the dimensionality of multidimensional parameters and 
detect anomalies based on the deviation from the normal distribution (Ringberg et al., 2007). 
Improved PCA algorithms, such as Convex Hull PCA (B. Zhou et al., 2016) and PCA-Independent 
Component Analysis (PCA-ICA) (P. Zhou et al., 2020), enhance the performance of PCA by 
incorporating additional features or constraints. Data-driven methods usually have advantages 
in generalization and maintenance. However, the key to their successful application lies in how 
to utilize data effectively while aligning with the process requirements.

Expert system-based methods for anomaly detection have several drawbacks (Li et al., 2012; Stein 
et al., 2003), such as relying on limited experience, lacking generalization ability, and requiring high 
maintenance costs. Data-driven methods also face some challenges, such as having low compatibility 
with the process characteristics, and encountering difficulty in handling data variations, non-Gaussian 
distributions, periodicities, etc. To effectively detect, identify, and warn of multiple types of anomalies 
in blast furnace operation, it is essential to select appropriate parameters and models that reflect 
the process knowledge. Therefore, the algorithm system should be able to adapt to different data 
dimensions, distributions, periodicities, etc. In this paper, the authors propose a novel blast furnace 
anomaly detection algorithm that integrates periodicity detection, multi-domain feature extraction, 
and adaptive anomaly detection. They first extracted the parameters that were decisive for an anomaly 
detection model from the production data. Then the parameters were combined with the process 
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knowledge to analyze their non-Gaussian and periodic features. Finally, the algorithm was applied 
to detect anomalies based on the extracted features. The algorithm was validated on real-world blast 
furnace production data and its effectiveness and robustness was then demonstrated.

MATeRIALS AND MeTHoDS

Characteristics and effect of Blast Furnace Anomaly Characterization Data
Data Dimensions
Blast furnace ironmaking is a complex and continuous production process that requires various 
parameters for monitoring its working status, such as top gas temperature and top gas pressure. 
These parameters can be collected and recorded at a minute-level temporal resolution with the help 
of digital technologies in data collection, processing, transmission, and storage. This paper uses 
minute-level data for all research. The parameters that characterize the blast furnace anomalies are 
multidimensional, correlated, and type-specific. Hence, the proposed algorithm can adapt to the data 
dimension changes according to the process requirements.

Data Distribution
The data distribution of blast furnace characterization parameters exhibits significant non-Gaussian 
characteristics. Taking the gas utilization ratio and the lower pressure difference as examples, Figure 
1 shows their kernel density plots, (a) shows the distribution of gas utilization ratio and, (b) shows 
the distribution of lower pressure difference. Therefore, the anomaly detection algorithm needs to 
consider how to better handle the data with non-Gaussian distribution (Madar et al., 2011).

Data Periodicities
The blast furnace characterization parameters have different periodicities. The data can be divided 
into two categories: one has longer periodicity and shows as instantaneous spikes, and the other has 
shorter periodicity and shows as oscillations. In addition, the periodicity of the data also has some 
dynamics with the changes of blast furnace smelting production.

For the data with longer periodicity and instantaneous spikes, anomaly detection is easily affected 
if these disturbance segments are not removed. For the data with shorter periodicity and oscillations, if 
the peaks and valleys are not handled well, they can easily cause false alarms of the anomaly detection 
system (Wen et al., 2021; Y. Zhu et al., 2015; Zhu, 2006).

Figure 1. Kernel density plot of blast furnace characterization parameters
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Multi Domain Adaptive Anomaly Detection
Overall Algorithm Structure
The Multi Domain Adaptive Anomaly Detection (MDAAD) algorithm, whose overall structure is 
shown in Figure 2, mainly consists of three parts:

• Period Detection: Identify the significant periodicity in the data by using Fast Fourier Transform 
(FFT) and power spectrum calculation.

• Multi Domain Feature Extraction: Remove the interference in the data and extract features for 
periodic and non-periodic parameters, respectively, based on peak-valley detection algorithm.

• Adaptive Anomaly Detection: Support one-dimensional, two-dimensional, and high-dimensional 
anomaly detection, and support distribution adaptation by calculating deviation distance and 
performing anomaly distribution and probability transformation.

Periodicity Detection Module
The periodicity detection module identifies whether the blast furnace parameters have significant 
periodicity, mainly including: FFT, power calculation, and periodicity identification.

Any time-domain signal can be represented in the frequency domain as the superposition of 
sinusoidal waves with different amplitudes and phases. The Discrete Fourier Transform (DFT) of a 
finite-length discrete signal x n n N( ) = … −, , , , 0 1 1  is defined as:
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which means x n( )  is represented as the sum of the different frequency components of the 
coefficient X k( ) .

Fast Fourier Transform (FFT) is the general name of the efficient and fast calculation methods 
for computing the Discrete Fourier Transform (DFT) using a computer (Yang et al., 2004). Frequency 
domain measurement can obtain the energy of the signal at a specific frequency. The frequency with 
significant energy corresponds to the significant periodicity.

Figure 2. Schematic of multi-domain adaptive anomaly detection algorithm
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Multi Domain Feature Extraction Module
Based on the periodicity detection results, extract time domain, frequency domain, and other features 
of multi-dimensional characterization parameters. As shown in Table 1, the extracted features include 
current value, trend index, peak-valley, etc.

To extract frequency domain related features, the Automatic Multiscale-Based Peak Detection 
(AMPD) algorithm is introduced, which is an automatic multiscale peak finding algorithm. For a 
periodic signal X , the AMPD algorithm calculates the local maximum scalar (LMS) by using a 
sliding window method. The LMS of signal X  can be expressed as:
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where r  denotes a uniformly distributed random number in the range 0 1,  

  and α  denotes a constant 

number α =( )1 .
By row reducing M  and finding the minimum r , and then calculating the standard deviation 

of the column extremes, peak detection can be achieved (Scholkmann et al., 2012).

Adaptive Anomaly Detection Module
For detecting anomalies in blast furnaces, each type of anomaly typically needs a separate model. The 
data may vary in dimension and exhibit non-Gaussian features, hence, requiring adaptation accordingly. 
The proposed anomaly detection algorithm can adapt to both the dimension and distribution changes.

Dimensional Adaptation
The proposed framework can detect anomalies in data with different dimensions. The authors measured 
the degree of anomaly by the deviation distance from the mean for one-dimensional data, by the 
deviation distance from the confidence ellipse for two-dimensional data, and by the deviation distance 

Table 1. Multi domain features

Parameter Domain Feature

Periodic

Time domain Current value

Time domain Trend index

Frequency domain Difference between current value and peak mean value

Frequency domain Difference between current value and valley mean value

… …

Aperiodic
Time domain Current value

Time domain Trend index
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from the dimensionality reduction statistic for high-dimensional data. In addition, a distribution 
adaptation submodule was incorporated into each dimensional anomaly detection method. The 
adaptive dimensional detection algorithms output deviation distances, which are converted to anomaly 
probabilities by the distribution and probability transformation module.

Distribution Adaptation
The authors assumed that a random variable X  follows a Gaussian mixture distribution with density 
function given by:

p X
k

k

K

k
( ) ,= ( )

=
∑π µΝ Σ

1

X | 
k

 (5)

where each component is a Gaussian distribution with mean µ
k

 and variance Σ
k
2 , and π

k
 is the 

coefficient of the k
th

 Gaussian distribution. The expectation maximization (EM) algorithm estimates 
the parameters (Zhu et al., 2021):
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k
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The EM algorithm consists of the following steps:

Step 1: Initialize the parameters with some initial values.
Step 2: Perform the E-step and the M-step to update the parameters using the current data.
Step 3: Repeat Step 2 until convergence or a stopping criterion is met.

One-Dimensional Anomaly Detection
The authors considered a one-dimensional data x  that follows a Gaussian mixture distribution with 
K  components. The GMM-EM algorithm can estimate the parameters of each component and assign 
x  to the most likely component k . The probability density function of the k

th
 component is:

Ν Σx
k k

| ,µ( )  (7)

The deviation distance of the mean of the normal distribution was used as a criterion for 
anomaly detection:

d deviation x
k

= ( ),µ  (8)

where the deviation function calculates the Euclidean distance.

Two-Dimensional Anomaly Detection
The authors considered two-dimensional data that followed a Gaussian mixture distribution with K  
components. The GMM-EM algorithm can estimate the parameters of each component and assign 
each data point to the most likely component k . The confidence ellipse detection algorithm was used 
for anomaly detection. The confidence ellipse is an elliptical region that contains a certain proportion 
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of the data points from the same component at a given confidence level p . The deviation distance 
of a data point from the center of the confidence ellipse was calculated and output by the algorithm. 
The probability density function of a bivariate normal distribution is given by:
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where Σ  denotes the covariance matrix of x , and µ  denotes the mean of x .
The confidence region of the bivariate normal distribution is also an elliptical area enclosed by 

an ellipse curve. The deviation distance of a data point from the center of the confidence ellipse is 
computed and returned by the two-dimensional anomaly detection module:

d deviation ellipse
k

= ( )x,  (10)

where the ellipse
k

 denotes the k
th

 confidence ellipse.

High-Dimensional Anomaly Detection
The authors used principal component analysis (PCA) to compress high-dimensional data into two 
orthogonal subspaces: the principal and the non-principal. The principal subspace contains the main 
information, and the non-principal subspace contains the residual information. Applying PCA to the 
standardized data X , one gets the following decomposition:
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where m  is the number of principal components, S  is the score matrix, and P  is a load 
matrix consisting of eigenvectors. Using the following formulas, the statistics SPE and T 2  
was calculated:

SPE I P P x
m m
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m m
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where P
m

 denotes the top m  columns of the load matrix and Λ
m

 denotes a diagonal matrix of the 
top m  singular values.

The authors assigned each data point to its k
th

 Gaussian component using the mixed Gaussian 
model and obtained the statistic for that component:

GMM T t t
k k k

T

k k k
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where T
k

, µ
k

 and Σ
k

 denote the principal component, mean, and covariance of the k
th

 Gaussian 
component, respectively, trained offline (Zhu et al., 2021). The control line for the statistical quantity 
that corresponds to the k

th
 Gaussian distribution is defined by:

GMM T UCL quantile GMM T q
k k

_ _ _ ,2 2= ( )  (15)

SPE UCL quantile SPE q_ ,= ( )  (16)

where q  is a quantile, such as 0 99. . The final deviation distance based on the statistical quantity is 
defined by:

d deviation GMM T GMM T UCL SPE SPE UCL
k k

= ( ) ( )( )_ _ _ , _ , ,2 2 0 0  (17)

Probability Transformation
The deviation distance output by each dimension anomaly-detection algorithm is transformed to 
anomaly probability. First, the normality transform is performed, and then the probability is calculated. 
The normality transform uses Box-Cox transform (Cheddad, 2020). The formula is:
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where y  has a normal distribution with mean µ  and variance σ , d  denotes the transformation of 
input data (i.e. deviation distance), and λ  is a transformation parameter. The probability transform 
maps the transformed values to probability intervals. The values of a  and b  are set according to the 
business needs (the default values are a = 0 6. , b = +µ σ3 ):
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ReSULTS

experimental Data
A blast furnace data set was selected for simulation. The time span of the data set covered from 
2021-04-01 to 2022-03-31. The channeling anomalies that occurred during this period were 
validated. Channeling anomaly refers to: when the permeability of a local area on the blast 
furnace cross-section is exceptionally high, resulting in uneven distribution of gas flow, and a 
region with exceptionally high gas flow, which forms a channeling. The relevant parameters of 
the blast furnace are shown in Table 2.
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Periodic Detection and Analysis
Periodic Detection Results
By using the periodic detection module, two types of periodicity were mainly observed in the blast 
furnace characterization parameters.

The first type was short-term fluctuations with a period length of 10 minutes. Related parameters: 
top gas temperature, top gas pressure, Z value, and W value. The peak and valley detection of this 
type of periodic data can be used for multi-domain feature extraction. As shown in Figure 3, (a) 
shows the time series data, (b) shows the spectrogram, (c) shows the dominant period, and (d) shows 
the peak and valley detection.

The second type was long-term transient spikes with a period length of 60 minutes. Related 
parameters: blast kinetic energy, air volume, and hot blast pressure. This type of periodic data uses a 
disturbance elimination method to remove the time segments corresponding to the transient spikes, 
as shown in Figure 4.

Table 2. Blast furnace anomaly characterization parameters

ID Parameter

1 Top gas temperature

2 Top gas pressure

3 Pressure difference

4 Upper pressure difference

5 Lower pressure difference

6 Cross temperature

7 Permeability index

8 Throat steel brick temperature

9 Center cross temperature

10 Z value

11 W value

12 Blast furnace burden depth

13 Gas utilization ratio

14 Theoretical flame temperature

15 Shaft static pressure

16 Cooling wall temperature of each layer

17 Air volume

18 Hot blast pressure

19 Oxygen enrichment ratio

20 Blast kinetic energy

21 Hot blast temperature

22 ROD descent speed
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Periodic Process Interpretation

• 10-minute short-term fluctuations: Based on process analysis, it was found that this type of 
periodicity was related to the alternation of charging pattern in blast furnace ironmaking. The 
blast furnace charges the burden materials into the blast furnace throat in batches through the 
charging hopper. The newly charged burden materials absorb heat due to thermal conduction, 
and the top gas temperature gradually decreases. Alternating charging pattern causes periodic 
variations in top gas temperature.

• 10-minute short-term dynamic changes: The blast furnace monitors the changes in 
the level of burden surface through the main scale data, and performs charging when 
the preset conditions are met. The above process leads to dynamic changes in the 
charging time, that is, the descent rate of burden surface in blast furnace ironmaking 
is not a constant speed, and the time interval when the charging condition is met 
varies dynamically.

• 60-minute long-term transient spikes: Based on process analysis, it was found that 
this type of periodicity was related to the blast furnace stove change. The blast furnace 
supplies air alternately through multiple hot stoves, usually switching hot stoves every 60 
minutes or so. This process flow results in transient spikes in blast furnace characterization 
parameters at 60-minute intervals.

Figure 3. Top gas temperature: Periodic detection results
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Periodic Application Performance
By conducting periodic detection on the parameters and detecting the transient spikes of long periods, 
about 13%  of the disturbance effects in the data can be removed. By conducting periodic detection 
on the data, about 52%  of the peak and valley data that do not match the periodicity can be filtered 
out, thereby enhancing the application performance of the peak and valley-related features.

Blast Furnace Anomaly Detection
The main goal of blast furnace anomaly detection is to identify anomalies as early as possible so that more 
time is available for operational intervention. This can minimize damage and improve production stability, 
fuel efficiency, product quality, and other benefits. In this paper, the authors compared the performance of 
the proposed MDAAD algorithm, AAD algorithm (MDAAD without the multi-domain feature module), 
ConvexHull-PCA algorithm (PCA based on convex hull), and the MD-ConvexHull-PCA algorithm 
(ConvexHull-PCA algorithm with multi-domain features). As shown in Table 3, they used the following 
metrics: false alarm rate, early warning rate, lead-time of early warning, and duration of early warning.

The experiment showed that the MDAAD algorithm achieved the best results in terms of early 
warning rate and duration of early warning, and also obtained significant improvement in terms of 
false alarm rate and lead time of early warning.

CoNCLUSIoN

In this paper, the authors presented a multi-domain adaptive anomaly detection (MDAAD) method 
for blast furnace anomaly detection. The proposed method takes into account the features of data 

Figure 4. Blast kinetic energy: Transient spike elimination
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dimensionality change, as well as non-Gaussianity and periodicity in data distribution. The method is 
built upon a furnace condition parameter-characterization model, a mining model of periodic patterns 
in the ironmaking process, and a multi-domain adaptive anomaly detection algorithm. Extensive 
numerical analyses based on multiple datasets obtained from real-world steel manufacturing processes 
were performed as well. Numerical results clearly suggest that the proposed method out performs its 
peers in terms of detection effectiveness and accuracy.

Future research directions include evaluating the impact of multiple periodicities on anomaly 
detection, performing periodic lag analysis (for example, the actual blast furnace charging pattern, the 
charging-related pattern of top gas temperature, the charging-related pattern of top gas pressure, the time 
lag among them), and optimizing the multi-dimensional metric weights of anomaly detection algorithm.
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Table 3. Comparison of anomaly detection algorithms

Methods False Alarm 
Rate

Early Warning 
Rate

Time Advance of Early 
Warning

Duration of Early 
Warning

MDAAD 0.500 0.833 11.500 min 20.833 min

AAD 0.600 0.833 11.667 min 20.167 min

MD-ConvexHull-PCA 0.400 0.500 7.333 min 21.000 min

ConvexHull-PCA 0.647 0.500 7.333 min 20.167 min
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